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I. INTRODUCTION

The interior ballistic models to date have captured the overall
performance of the regenerative liguid propellant gun. Accordingly, recent
interest has shifted toward a more complete treatment of the regenerative
liquid propellant gun interior ballistic process. In an attempt to describe
one of the details of the process, we address the distributions of velocity
and pressure in the liquid reservoir of the regenerative ligquid propellant
gun. The present work 1is a continuation of the treatment of the 1liquid

' 2 in which a simplified treatment

injection process presented by the authors
of pressure distribution was considered as part of the injection model. The
distributions are derived from a modified Lagrange distribution with area
change to account for the shape of the regenerative piston and the center

bolt. The results are then compared toc a one-dimensional simulation.

II. CONTRCL VOLUME

Tne recenerative liguid propellant gun process, illustrated in Figure 1,
1s 1nitaatel ky £farinc a pramer which pressurizes the initial combustion
charmber. The chamber pressure acting orn the piston forces it tc the rear,
compressinc the 1liguic propellart 1i1n the reservoir, After an initial
transient perisc, the pressure 1n the liguid reservolr will be greater than
the combustion chamber pressure due to the differertial area across the
irnjecticn F1s8tOr, resulting 1n the injection of 1ligquid propellant into the

combustion charber,

In this paper we are concerned only with the 1liguid propellant
reservoir. The combustion chamber pressure is taken from an experimental
firing of a 30-mm Concept VI fixture (shown in Figure 1), and input as a
boundary condition. The control volume is shown in Figure 2. The contours of
the piston and the reservoir are approximated by straight line segments as
indicated. The center bolt and the transducer Slock are fixed in the
reference frame of the chamber. The origin of the coordinate system, fixed in
tie chamber frame of reference, is at the rear (left hand) end of the
reservcir, anZ x 1s the coordinate along the bolt as shown in Figure 2. The

F1 ton moves rearwars with a velocity up(t), and the points s,(t), s,(t), and




s3(t) are the coordinates of fixed stations on the inner contour of the piston
with respect to the origin, as shown, such that these coordinates vary with
time as the piston 1s displaced to the left. The sign convention for piston
velocity is opposite of that for fluid velocity. Note that the right hand
face of the control vclume coincides with the exit plane of the injection

orifice, Sy such that the control volume also varies with time.

contno. BEFORE ARING

INNER noo
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ouTER SUECTION
PROPELLANT
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S |/
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QIANSER

AFTER FiRING

Figure ', A Regererative lLicuid Preopellant Gun with an Annular Piston

CONTROL VOLUME

o CONTROL VOLUME INCLUDES
RESERVOIR AND PISTON

Figure 2, Control volume




III. BACKGROUND

A simplified treatment of the control volume detailed above which couples
the piston motion and the liguid velocity was described in an earlier

2 fThe goal was to describe the injection process by coupling the

paper.1
motion of the regenerative piston and the liquid injection thereby capturing

the time-dependent nature of the discharge coefficient.

A simulation of a firing of a Concept VI 30-mm test fixture at BRL had
indicated that the model exhibited a mean value of the discharge coefficient
which agreed guite well with that of the experimental data in the steady state
operatior, but there was lack of agreement in the early values and in the slow
rise to steady state, Since the model had not addressed the Belleville
springs, which are utilizec i1n the test fixture to permit the piston to clear
the seal on the nose of the center bolt, the springs were included in the
model with results shown 1n figures 3, 4 and 5. The comparison between
experimental and predicted piston motion, with the inclusion of the Belleville
springs, s shown 1n figure 3, The actual piston travels about 0.55 cm,
hesitates as the rear transducer block comes to a stop against the Belleville
springs, and then accelerates andd smoothly completes 1ts stroke, The
simulaticn shows the sare gualitative motion as the actual piston. However,
the simulated pistcn position passes through the transient stage more quickly,
with the hesitation occurring approximately 1 ms before that in the
experiment, The reason for the discrepancy 1s not clear, In figure 4 a
similar resuit 1s reflected 1n the 1liguiéd pressure. Qualitatively the
simulation reflects the early oscillations 1in experimental liquid pressure,
and, after an initial transient period, remains in close agreement., However,
the oscillations occur too early in the simulation. The comparison between
the discharge coefficient derived from experimental data and that predicted by
the model 1s shown 1in figure 5., Although the mean values at steady state are
in reasonable agreement, the model does not capture the slow rise to steady

state.

.
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Ir order tc exar:ne the discrepancies between the experiment and the
mode., several sinmplifications irn the model were examined and removed. The
theorezical model can be broken 1nto two ma-or components. The first involves
the derivaticn cf eguaticns describing the distributions of velocity and
pressure 1n the ligu:id reservoir from a continuum analysis, The second
involves the cour.:ng of these eguations into the momentur equation for the
pistorn. In <this paper the first stage of the derivation is discussed, namely
the distributions of velocity and pressure 1in the liquid reservoair, In the
earlier model the contours of the outer piston and inner bolt were not
included in the representation of the pressure distribution in the laquid
reservoir; they are now explicitly considered. It is not possible to evaluate
the impact of these additional considerations on the comparison with
experimental data until the second stage of the derivation is completed.
Therefore, to assess the validity of this stage of the modeling, a comparison

is made to a one-dimensional sirulation of the ligquid reservoar.
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IV. EQUATIONS OF MOTION FOR THE FLUID AND VELOCITY DISTRIBUTION

The equations of motion for the fluid, continuity and momentum eguations,
are written to include area change as the piston moves rearward. We note that
the area through which the fluid flows is a function of both time and position
since the contoured piston moves rearward over a contoured bolt. The

equations of motion are then
a/9t (pA) + 9/ax (pvA) = O (1)
3/3 (ovh) + 3/ (gvA) = - A P/ . (2)

We obtairn the eguation for the velocity distribution from the continuity
eguation (1). From (1), using the Lagrange approximation, i.e. assuming that

the density 1s szatially uniform at each timestep, 3p/ X = C, we have
A (1/p) 3p/dt = - A/t - 3/9x (VA) . (3)

The goal 1s to eliminate the partia.: derivatives with respect to t, time, and
recast the eguation in 3/3x . The resulting equation 1s then integrated with
respect to X to obtain an expression for velocity as a function of time and

position., Consider

m * m ¢

.2 o o TE "
9t 3t V. \'R v2
= R

where m; 1s the mass of liquid in the reservoir, and Vg 1s the volume of the
reservoir.,
Now,

m = - pA_V. - pu A (s)

and

—l

®
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V.= -u_ (A + A_) (6)
P

1
such that, E = = ecelecceaes = (7)

where vy 1is the velocity of the exiting liquid, Aj is the exit vent area, Y
is the projected area of the piston on the liquid reservoir side, and up is
the velocity of the piston. The exit vent area, A3, is the annular area
between the piston at s, and the bolt. A5 is time dependent, but it is not a
function of position x. The time rate of change of mass includes both the
mass flux through the orifice with respect to the bolt and the additional mass
flux intc the chaxber due to the piston motion. It is notea that we have
choser. a laboratory reference frame stationary on the bolt wath 0.0 at the
back wall an2 the pos:zive x-axis forward. Since the natural moticn of the
liguid 1s to the rignt through the vent, and the natural motion of the piston
1s tc the lefrt toward the back wall, vy 1s positive to the right while u_ 1s

P
posit:ive tc the lef:t,

It car te showr tnat the tire rate of change of area 1s

where R{x,t) 1< trhe rad:us cf the 1nner contour of the piston where we have

expliicity ncted that area 1s dependent on position and time.

Equation (3) ther becomes

2
- - Am_(x,2)] (L3.3____p.R)
(vAa) = up = + 5

3. Alx,t) . (8)

Integrating with respect to x and noting that v{0,t) = O we obtain

pr? o ®%x.t)] [v,A. - u A)
V{X,t) = U =memeccccecaceaa- + --2-2----2-5- YSfLEl (9)

~J




where V(x,t) is the volume of the reservoir from the back wall to the position

Xx. Eguation 9 defines the velocity distribution in the liguid reservoar.

It is useful to rewrite equation (9) in terms of the liquid areas. Note that

2
(R 0

2 2 2 2 2
- R (x,t)) = w[(R o~ F 0) - (R (x,t) - r, (x))] = A, - A(x,t)
where we have used the fact that the radius of the bolt varies by only a small
amount over its length, e.g. the maximum radius is 1.79 cm and the mimimum
2

1.65 em. Thus r o~ rbz(x) is a very small number. Using this approximation,

equation (9) becomes

vix,t) = I <. + m—tefcecmioen meema- . (10)

V. PRESSURE DISTRIBUTION

Using eguazion (1) 1n (2) and 1ntegrating with respect to x from O to X

we obtain
2 o
Pi{x,t) = Pc(t) - 1/2s v (x,t) =~ p , vix',t) dx' (1)
o]

in which Po(t) 1s the breech pressure at a given time. Integrating the time

derivative of (10)

x . 1
[T %8t vit,x') dx' = A A fx ----- dx' - u 2
w p A{x,t) P
o) o)
2 1 . Vix',t) .
..... + AP
p Aw A(x,t) upx %2 A(x',t)
1 vix',t)
-z, A f x;(;T'EY dx' 4z u x - z,u f x-iif--- dx' (12)
F o ! F Po a%x',v

i




where
V_,A_ - U A
R
z, = 3 3 E (13)
R
vR(vBA3 + Av,y) - VRARYp * (VyR,- upAR) up(AR+ A,)
2, = (14)
2 v 2
R
and we have used
%l
N ! 1 1
= o Sl e Tl (1)
Ix)
0 A% (x', %) W ' P
' ) ghl ! ', t
fx \;x Pt anat't) ix' = ;x VIix ) ax'| v . (16)
0 AT (x',t) B C RT(x',t) P
h By defiriticrn
s s
;3
i Pix,t)A(x,zidx f 3 P(x,<)A(x,t)dx
Bl = =< = < (17)
53 v
. AlX,%icx R
o
witn F(t) the scace-rearn pressure,
i’ Thus, the breech pressure Po(t) is given by
53 2
P_(t) = B(t) + 5;; [ 7 viix, ) Alx,t)dx
“ R O
s3 X
- == 7 an M e, vaxtox (18)
F C C




or

3 pu A s
- W 3 1
: P (t) = P(e) + --E-_Z._ ] T ogr=-=t dx
i o ZVR o A(x,t)
b U s pu 2
1
+ -=2F f 3A(x, t) Ix AT dx'dx - --E-
L . R o] o] !
i
; 74 2 S 2 4 S
CE vl o Tl Pavenn)
2V Rix,t) VR A(x,t)
ol s pz S ,
- \_1_8 f : XA{x,t)dx + \-/--2- f 3A(x,t) ]x %’%;758- dx'dx
R O R C o} !
po 2 S gz u A
1 1 ; 1
- --“-[;-- f BV(X,t)CiX - -‘{/-E-‘: f 3A(x, <) jx ;\T).(T-ET dx'dx
) e R 0 ¢ ’
pz . u s . u s
-~ 3 ' 1P
- --C‘—E ; JA(x,t) fx Y.;.’_‘-Lf'l- dx'dx + —\-’,--E f BxA(x,t)dx .
R C O A (x',t) R 0
(19)
The relationship of breech pressure to P(x,t) is given by
2 X .
Pix,t) = P (t) - 1/2pv (x,0) =~ p [ v(x',t) dx' . (20)
(o}
Combining (10), (12), and (19)
.1
10
».w
e e




pu 2A 2 []
- P W r3 1
P(t) + > J dx
2\1R o A(x,t)
PA U S
w p 3 X 1 ¢
+ v f A(x,t) f mdx dx
R 0 0
2 s 2 Az s
"’21 f3V(x,t) de"”pw1 JEREAIN
Ve g Alx,t) Ve o A(x,t)
Fe 7 P2y 8 vix',t)

3 XF\(X,t)dx + \_—-2' f 3 A(x,t) fx
K 0]

i
o Rxm o) O

P s C-Z,UFA‘_ s3 <
- —= LD oVix,n)dx - —-\—’-’— PR YE P SIS AT ax'ex
Tk c K o C !
cz. - s
17 ¢ Vix',
- — Alx,e) [ == £ ax'ax
F > C A (x',v)
2. 2 2 2
) a-P A i pV (x,t)z1 i pupAwV(x,t)z1
z 2 2
2h7(x,t 2R (x,t) AT (x,t)
M Vix,t)c
P 1 . X 1 ax’
————————— - —— X
* A(x,t) + 1 mwup +m1uphw] IO A(x',t)
(x', Vix,t) ,
* P x - Pz, fx :((i, E)) dx' + fz,u fx ; dx
t c ' F C a (x,t)
11




T T T vy — — 4_,1

20y 53
- P2 .U X + ----F f xA(x,t)dx , (21)
P YR o

The integrals involve A(x,t), the area at x at a given time, ard Vv(x,t),
the volume of the reservoir from the back wall to x at a given time. The

integration is performed numerically.

In order to numerically integrate, we first develop expressions f>r the area,

A(x,t), and volume, V(x,t).

Approximating the contour on the 1inner surface of the -iston by the
dashed straight line as indicated in Figure 1, we can express the radius of

the piston as measured from the center line as

Rz- }'-i1
= { R 4 =5cc-- - - - 3}
R(x,t) { R, + T8 (% 51) [ 1 H(s1 x)])}
H(52 - x) + R2 {1 - H(52 - x)] H(s3 - ¥ (22)

where x 1indicates the positicn on the bolt, R; 1ndicates the radius of the
piston at s; and kK, 1s the radius of the piston at s,. F.x) is the Heaviside
function defined as H(x)=0 for x<0 and H{x)=1 for x>=0. The radius of the
inner surface of the pistor at a position x is time deper dent since the piston

1S mOvVing.

Similarly, the radius of the bolt at any positicn x on the bolt can be

expressed

r. [ 1 - H({x. - x)) H(x., -~ x) . (23)

The cross-secticnal area cf the liquid 1s then gi1ven by

12
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A(x,t) = "Rz(xlt) - '"sz(X) (24)

and the volume of liguid, V(x,t), 1is

vix,t) = [FA(x',t) dx' . (25)
(0]

Returning to (13), although it is possible to obtain an analytic solution
for some of the integrals, the representation is dependent upon the location
in the reservoir and the particular geometry of the problem. Thus, to
maintain the generality of the solution, it was decided toc obtain the values
of the integrals numerically. This procedure yields satisfactory results, and
it was felt that no further refinement was necessary. The pressure

distribution is then given by (21) with the velocity v(x,t) given by (10).
VI. RESULTS

The velocity angd rpressure distributions predicted by the code are
reasonable fror a filuid dynamics viewpoint, namely, a constriction causes the
velocity tc rise and the pressure to fall. In particular, the calculated
distraibuticns reflect the geometry of the 30-mm test fixture at the Ballistic

Research Laboraczcry.,

The predicted velocity and pressure distributions can be classified into
one of twc cases, For the malority of the injection cycle, the piston head is
over the flat portion cf the bolt as shown in Figure 6 with points A, B and C
denoting fixed locations on the piston as shown. The slant section of the
piston is between A and B with the flat vent from B to C. A typical pressure
distribution computed by the model is shown in Figure 7 at 3.0 ms where the
piston head is positioned over the flat section of the bolt. The pressure
distribution follows the shape of the piston as expected; relatively constant
along the flat portion of the piston, decreasing over the converging slant
section of the piston from A to B, and leveling out again through the vent
from B to C. The slight increase in pressure of approximately 1 MPa may
indicate difficulty with the numerical integration or differentiation at some

timesteps. From the Bernoulll egquation, we would expect the velocity

13




distribution to generally follow the pressure distribution inversely, i.e. as
the pressure decreases, the velocity increases. Figure 8 shows the velocity
distribution (expressed in scientific notation) at 3.0 ms with the expected
result; the velocity gradient is shallow from the back wall of the reservoir
to the beginning of the slant section at A, increases from A to B on the
converging slant section of the piston, and maintains a relatively constant
velocity through the vent. Although the velocity appears to be zero over the
flat section of the piston, a more detailed look at the velocity distribution
shows a linear increase from zero at the back wall to approximately 60 cm/s at

position A, the beginning of the slant section of the piston.

A
‘\é-_—-_c /]
_J._--x-----q

Figure 6. Relative Position of the Piston and the Bolt for the Major
bPortion of the Injection Cycle
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Figure 7. Predicted Pressure Distribution in the Liguid Reservoir at 3.0 ms
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Figure 8. Predicted Velocity Distribution in the Liguid Reservolr at 3.0 ms
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A second case of piston position relative to the bolt is shown in Figure
9. During the startup cycle the piston is positioned such that the vent from
B to C passes over the slant section of the bolt from D to E. Thus, exiting
liquid encounters a converging area from A to B, a flat section of the vent,
and an additional converging area when C is between D and E. It is expected
that the predicted pressure and velocity distributions will reflect the
additional area change. The pressure distribution at 1.3 ms is shown in
Figure 10. Again the pressure is stable over the flat section of the piston,
drops between points A and B, and flattens through the vent. However, as the
liquid encounters the convergent area on the bolt from D to E, the pressure
distribution shows an additional drop. The wvelocity distribution in the
reservoir at 1.3 ms, Figure 11, again shows the expected relationship between

the velocity and pressure distributions.

The magnitude of the velocity and pressure gradients at 1.3 ms 1s lower
than at 3.0 ms, reflecting the lower piston velocity near the beginning of the

injection cycle.

Figure 9. Relative Position of the Piston and the Bolt for the Beginning
portion of the Injection Cycle
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VII. COMPARISON TO ONE-DIMENSIONAL MODEL

A comparison of the predicted velocity and pressure distributions to a

one-dimensional model developed by Coffeed

gives a quantitative assessment of
the model. The one-dimensional representation differs from the model
described in this paper in that the back wall is moved to simulate piston
motion as taken from an experimental firing of the 30-mm test fixture at the
BRL. Since the velocity of the back wall is non-zero in the one-dimensional
model, the piston velocity was subtracted from the 1-D velocity distribution
for purposes of direct comparison. The piston positions were matched with

respect to the fixed coordinate system on the bolt at a time of 3.4 ms ir both

models,

The corpariscn of the velocity distributions is shown in Figure 12.
Quantitatively the two models show good agreement on the flat section of the
piston and the vent with a difference in exit velocities of about 1%. The
major discrepancy between the models occurs on the slant section of the
piston., This is felt to reflect the apprcximation of the partial differentaal

equations with créinary cifferertial eguaticns.

The cecrpariscn c¢f pressure distributions between the model and one-
dimensiora: siruiation 15 shown an Figure 13, The gradients show good
qualitative and guantitative behavior with a difference of .2% at the back

wall.

Future work will focus on integration of these equations into the

complete injector model.
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VIII. CONCLUSIONS

A simplification of the continuity and momentum eguations Yyields
equations to describe the velocity gradient and pressure gradient in the
liquid reservoir of a regenerative liguid propellant gun. The resulting

equations are applicable to other time-dependent geometries provided the

assumption that 3p/ax = 0 is acceptable. When applied to the 30-mm test
fixture at the BRL, the velocity and pressure distributions are reasonable
from a fluid dynamics perspective and compare favorably with results from a
one-dimensional code. Future work will concentrate on fully exploiting the
pressure distribution equation in modeling the relationship between piston

movement and ligquid flow from the reservoilr.
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LIST OF SYMBULS

Cross-sectional area of the vent, sz

C;oss-sectional area of the liqu:id, cm2

Cross-sectional are of the piston on reservoir side, cm2
Cross-sectional area of the piston at X, cm?
Cross-sectional area of the piston at the back wall, cm2
Mass flux of liquid into the combustion chamber, gm/s
Combustion chamber pressuve, MPa

Space mean pressure, MPa

Radius of the bolé at the back wall, ¢m

Radius of the bolt at x, cm

Radius of the pistor at x, cm

Velocaity of the picton, cm/s

Acceleration of t'e piston, cm/s2

Velocity of the _iquid at S3s cm/s

Acceleration of the liquid at sg Cm/s2

3

volume of tl.e ligquid reservoir, cm

Density of t-e liquid at a given time, gr/cCm
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APPENDIX A

owina data base was utilized to obtain the reported results.
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Concept 6, 30-mm fixture--Rd 8 after springs

COMBUSTION CHAMBER AREA =
PISTON AREA--C CH SIDE
PISTON AREA--RES SIDE
LENGTH L PRIME

LENGTH OF VENT

PISTON OFFSET

PISTON MASS

VOLUME LIQUID

VENT OPTION

STRAIGHT LENGTH OF PIST
MAX PISTON TRAVEL
DENSITY LIQUID

K1

K2

FRICTION LOSS LIQ OPTION=
FRICTION LOSS PIS OPTION=
TIME-C CH PRES DATA FILE:
GEOMETRY DATA FILE:

GRAPH DATA FILE:

INITIAL PR IN RESERVOIR
INITIAL VEL IN VENT
INITIAL PISTON VELOCITY
INITIAL PISTON POSITION
INTEGRATOR- -TINC
INTEGRATOR- -EPS
INTEGRATOR- -METH
INTEGRATOR- -MITER
INTEGRATOR- -KWRITE

DIFFERENTIAL EQUATION SET:

RAD PIST3 = 1.83000
RAD BOLT3 = 1.79770

VOL FUEL12 = 17.90837
VOL FUEL23 = 2.02661

FLAT LEN BOLT = 0.55880
IWRITE - 0

PR DISTRIBUTION OPTION =
NO. OF PTS FOR DIST = 20
VEL, PRES DIST DATA FILE:

44.84700
34.32600
23.27800
1.43200
1.04000
0.54400
2109.20000
172.62764

5.94680
7.37880
1.43700
5350.00000
9.11000

ptoffed.dat
r8geo55.dat
30mmcé6.gra

29.00000
0.00000
358.00000
.00000
.00010
.00001

OO+ OO0

1

RAD PIST2 =
RAD BOLT2 =

SLANT LEN BOLT = 0.76000

1
IP = 1
distvp.gra

1.83600
1.79770

RAD PIST1 =
RAD BOLT1 =

3.28000
1.65000

.
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